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Abstract: The flow characteristics around a rotating axial fan were experimentally investigated using a
phase-averaged PTV velocity field measurement technique. The axial fan has 5 forward-swept blades
with a radius of 25 mm. Measurements were carried out at 4 axial planes and 4 radial planes
perpendicular to the axis of rotation. For the axial plane measurements, one fan blade was divided into 4
different phases in order to analyze the flow structure according to blade phase. For each case, 500
instantaneous velocity fields were measured and ensemble averaged to obtain phase-averaged velocity
vector fields and vorticity contours. In addition, measurements were carried out at two planes around the
blade surface. Phase averaged velocity fields show periodic variations with respect to the blade phase.
The periodic shedding of the tip vortex at the blade tip is also observed. The phase averaged velocity
fields measured in the radial planes show periodic variations according to the fan phase and the distance
from the fan. These experimental results can be used to validate numerical calculations and to understand
the flow characteristics of forward-swept axial fans.
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1. Introduction
Axial-fans have been used in various applications ranging from small home appliances to large fans used in
industrial sites. However, they generate acoustic noise in some appliances. In order to improve the fan efficiency
and reduce the acoustic noise generated in the operation of axial fans, accurate measurements of flow field around
the fan is not only essential, but also indispensable for future developments of different kinds of turbomachinery.
Since the fan wake is a complicated three-dimensional flow, however, it is not easy to analyze the flow through
theoretical and numerical means, leading experimental researches on axial fans (Reynolds and Lakshminarayana,
1979).

Experimental studies on axial turbomachinery have had difficulties in analyzing the flow structure due to
the lack of effective measurement instruments. Most previous studies measured the flow velocities at discrete
points using point-wise measurement techniques. Ravindranath and Lakshminarayana (1980) measured the flow
velocity in the wake of a compressor rotor blade using a tri-axial hot-wire probe rotating with the rotor. They
revealed that large velocity decay occurs at the trailing edge of the blade and that the wake width in the trailing
edge region varies rapidly.

Morris et al. (1998) investigated the velocity distribution in the wake of an automotive cooling fan using
hot-wire anemometry. In general, hot-wire anemometry causes large errors in the reverse flow region such as just
behind the fan. They confirmed the periodic variation of the fan wake according to the fan blade phase. Inoue and
Kuroumaru (1984) measured the flow around a compressor rotor using a slanted hot-wire probe and the ensemble
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averaging technique. They analyzed the vortex structure including the trailing vortex shed at the trailing edge of
the rotor blade and the tip vortex shed from the outmost tip of the rotor blade.

Recently, field measurement techniques have been applied on the measurements of turbomachinery such as
fans and pumps. Sinha and Katz (1998) used an auto-correlation PIV technique with a high-resolution CCD
camera to measure the velocity fields inside a centrifugal pump. Cotroni et al. (2000) investigated the near wake of
a marine propeller in a cavitation tunnel using PIV method.

There are few publications pertaining the measurement of velocity field of the flow around an axial fan.
Most previous studies have dealt with axial rotors that are largely different in shape to that of the axial fan tested in
this study.

2. Experimental Apparatus and Method
The axial fan has 5 forward-swept blades. The tip-to-tip diameter and the hub diameter of the fan are 50 mm and
14.3 mm, respectively, giving a hub-to-tip ratio of 0.286. The axial fan was installed inside a rectangular basin as
shown in Fig. 1. An AC induction motor was used with an rpm controller for precise control of the fan rotation
speed. The basin was made of transparent acrylic plate and a lid covering the upper surface was attached to
eliminate the free surface effect. Tap water was used as the working fluid in which small particles having an
average diameter of 37 mmand a specific gravity of 1.016 were seeded. The rotation speed of the axial fan was set
at a constant 240 rpm throughout the experiments. A preliminary flow visualization experiment was carried out
before the actual PTV measurements, using the same seeding particles. No distinct flow was observed in the
vicinity of the basin walls.

280

14.3
Fan Model

Fig. 1. Experimental setup and axial fan (units: mm).

The 2-frame PTV velocity field measurement system consists of a Nd:YAG laser, a high-speed CCD
camera, a synchronization circuit and a PC as shown in Fig. 2. The dual-head Nd:YAG laser has a pulse width of
7 ns with a pulse rate of 20 Hz for each head. The high-speed CCD camera (Speedf'arrr) can capture particle
images at a frame rate ranging from 31 Hz to 1 kHz at 1 Hz increments with 512 x 512 pixel resolution. Details of
the synchronization circuits are described in Lee and Lee (1999).

A laser light sheet of approximately 2 mm in thickness was used to illuminate the measurement planes and
to capture particle images for velocity field measurements. The measurement sections in the axial and radial
planes are shown in Fig. 3. Velocity field measurements in the axial plane were carried out at 4 phases. The field
of view is 40 x 40 mrn', for which the lower-left corner was set at the center of the fan model (z =0, r =0). The 4
measurement phases were placed at angular intervals of 18°from the trailing edge of the blade tip and labeled as
phases 1, 2, 3 and 4. The phase difference of 18°between two adjacent measurement phases corresponds to the
elapse time of 12.5 ms. In addition, two additional measurement planes were selected for flow analysis around the
blade surface (Fig. 3(b)). The mid-plane was located at the mid-span of the blade, and the tip-plane was located at
the outmost tip of the blade, both parallel to the axis of rotation. The time interval between two consecutive
particle images was set to Dt= 1 ms, for which the fan rotates 1.44°and the displacement of the blade tip is about
0.63 mm.
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Fig. 2. Schematics of PTV system.
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Fig. 3. Field of views and coordinate system for axial and radial plane measurements (units: mm).

The coordinate axes and the field of view for radial plane measurements are shown in Fig, 3(c), Velocity
field measurements were carried out at five upper-half planes perpendicular to the axis of rotation at distances of
z/R =0,04, 0.25, 0,5, 0,75 and 1. Due to larger field of view compared with the axial plane measurements, the
time interval between two consecutive particle images was set at Dt=0,8 ms, for which the fan rotates 1.15

0

and
the tangential displacement at the blade tip is about 0,5 mm.

For each measurement section in the axial and radial planes, 1000 flow images were obtained, For the
derivation of velocity field from captured particle images, a home-made 2-frame PTV algorithm based on match
probability was applied, The 2-frame PTV algorithm has showed a better performance than conventional multi-
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frame PTV methods in terms of computation time, recovery rate of correct velocity vectors, number of error
vectors and dynamic range (Baek and Lee, 1996). The difference of mean velocity data between the 2-frame PTV
method and LDV under the same flow conditions was found to be less than 1%. The instantaneous velocity
vectors at random particle locations were interpolated into a regular grid using a multi-quadrant interpolation
method. The phase-averaged mean velocity field was obtained by ensemble averaging the 500 instantaneous
velocity fields at each case.

3. Results and Discussion

3.1 Axial Planes
500 instantaneous velocity vector fields measured for each of the 4 phases of the axial fan were ensemble averaged
to give a phase-averaged mean velocity field. The abscissa and the ordinate of all results are represented z and r
axes, normalized by the fan radius R. Figure 4 shows the ensemble-averaged mean velocity vector fields according
to the fan phase (l - 4). These phase-averaged velocity fields clearly show the periodic change of flow structure
behind the axial fan. Figure 4(a) represents the mean velocity field measured at phase 1. A relatively high­
momentum flow toward the hub is observed in the region just behind the fan (z /R<0.5), whereas the dominant flow
in phases 2 and 3 is parallel to the axis of rotation. As the fan rotates through phase 4, the high-momentum flow is
directed toward the hub again.
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Fig. 4. Mean velocity vector fields in the axial plane.
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The flow structure in the axial plane can be divided into 3 regions; the immediate wake region where the
flow is directed toward the axis of rotation, the region where the flow is directed away from the axis of rotation,
and the region thereafter the flow ceases to fluctuate, These seem to be closely related to the tip and trailing
vortices, The dividing boundary where the flow is parallel to the axis of rotation can then be used to distinguish
the different flow regions, The boundary in the velocity field of phase 1 shows a V shape, which is symmetric with
respect to the vertical line z IR =OA3, The vertical centerline is then shifted to the downstream location of
zlR =0,61 in phase 2, In phase 3, the V shaped boundary is observed at a further downstream location, However,
the right half of the dividing boundary can no longer be clearly distinguished, This blurring of the dividing
boundary results from the dissipation of the tip and trailing vortices as the flow goes downstream, This trend is
shown for all blade phases tested in this study,

In Fig, 4(d) of phase 4, the flow structure is similar to that of phase 1, however, the V shaped boundary is
located a small distance upstream in comparison with phase 1, The absolute value of the exit velocity at z IR =0 is
increased as the fan rotates from phase 1 to phase 4, In far wake region of 0,8<zIR, the general flow structure
remains constant regardless of the fan phase, From this, we can see that the fan phase only affects the flow in the
vicinity of the fan blades where z IR<O,8, From these results, the periodic characteristics of the flow with respect to
the fan phases can be observed,

Figure 5 shows the vorticity contours derived from the phase-averaged velocity field data, From these
results, the shedding of the tip and trailing vortices were confirmed, In phase 1, a positive tip vortex is located
behind the blade tip region, A region of negative vorticity exists between the hub and the mid-section of the fan
blade, In this region, vortices of circular shape are difficult to find, In phase 2, however, a large-scale negative
vortex rotating clockwise direction is shed from the blade in the region O<zIR<O,2, OA<rIR<O,8, The positive tip
vortex is moved downstream and its center is shifted from z IR =OJ 7 to z IR =0,25, At phase 3, the negative
trailing vortex near the hub is increased in size and is transferred downstream, The center location of the vortices
moves toward the axis of rotation from rlR =055 in phase 2 to rlR =OA5 in phase 3, while a new positive vortex

(a) phase 1

(c) phase 3

Fig. 5. Vorticity contours in the axial plane (units: S-1).
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is shed from the blade tip region. When the positive vortex in phase 1 moves downstream, the vorticity value is
decreased.

In phase 4, the tip vortex shedding from the previous phase is moved downstream and the trailing vortex
located in the lower half region in phase 3 is elongated. Such an elongation of the trailing vortex makes the flow
structure in the vicinity of the hub complex. The convection velocity of the tip vortex was estimated to be about
350 mm/s, corresponding to 0.557 Utip in the axial direction.

Figure 6 shows the phase-averaged velocity fields at the mid- and tip-planes. There is relatively high-speed
flow diagonally rising from the lower part of the flow field toward the blades, which keeps flowing in the diagonal
direction after passing the trailing edge. The dominant flow is perpendicular to the blade surface. At the mid­
plane, the dominant uprising flow changes its flow direction in the vicinity of (z /R, r/R) =(0.3, 0.3). In the tip­
plane, an influx is observed from the lower part of the flow field under the blade, which follows the trailing edge of
the blade along the circumference of the fan. In addition, the uprising flow along the z /R =0.3 line merges with
the main flow rising diagonally from the blade surface to form a sink at the location (z /R, r/R) =(- 0.1, 0.4).
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Fig. 6. Mean velocity vector fields in the mid- and tip-planes.

The vorticity contours of the mid- and tip-planes are shown in Fig. 7. As anticipated from the velocity field
results, the vorticity distribution in the tip-plane shows a higher complex flow structure compared to the mid-plane.
The two vorticity contours display significantly different spatial distributions, despite the small gap distance of
8.925 mm. In Fig. 7(a), a negative trailing vortex is formed near the trailing edge of the fan blade. It is interesting
to note a negative vortex centered at (z /R, r/R) =(- 0.05, 0.6), which is presumed to be the trace of the trailing
vortex shedding from the preceding blade.
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Fig. 7. Vorticity contours in the mid- and tip-planes (units: S-1).
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Figure 7(b) represents the vorticity contour at the tip plane, Negative vortices rotating clockwise are
distributed along the upper surface, Strong positive vortices exist at the trailing edge of the blade tip, which seems
to indicate the shedding of the tip vortices, The shedding of the tip vortices can also be confirmed from the
existence of the positive vortices located on the z /R =0,4 line, which seems to be the trace of the tip vortex formed
from the preceding blade,

3,2 Radial Planes
Figure 8 shows the phase-averaged velocity fields measured in the cross-sections perpendicular to the axis of
rotation at three downstream locations (z /R =0,04, 0,25 and 0,75), The axial fan is rotating in the counter­
clockwise direction and the angular position of the fan blade was phase-locked such that two blades are in
symmetry with respect to the vertical line x/R =0, as shown in Fig, 3(c), These velocity field results clearly show
the swirling flow motion as well as the decay of velocity components as the flow goes downstream,

_ U,. =630mml.
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(b) z/R=O.25
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(c) z/R=O.75

Fig. 8. Mean velocity vector fields in the radial planes.

Figure 8(a) displays the phase-averaged velocity field at the z /R =0.04 plane. In the region just behind the
blade spacing between two adjacent blades, the radial velocity component is small throughout the whole radius of
the fan blade. It is also interesting to note that the flow direction is drastically changed at the blade spacing. The
flow velocity at the leading edge of the blade is smaller than that in the vicinity of the trailing edge. This indicates
that the flow is accelerated from the leading edge to the region where the blade spacing is located. At the blade
spacing, the radial velocity component is largely decreased, which may be due to the effect of blade geometry: the
forward swept geometry of the fan blade pushes the flow entering the blade spacing to accelerate toward the
trailing edge as the fan rotates. The maximum flow speed occurs around the points (x/R, y /R) =(0.1,0.7), (0.75,
0.1) and (-0.55, 0,4), where the blade trailing edges are located. This is in good agreement with the results
measured in the axial planes. The tangential velocity component has small values in the vicinity of the hub. With
increasing the radial distance from the hub, the tangential velocity component increases and has a local maximum
value at r =0.7R, then starts to decrease as it approaches the blade tip.

In subsequent measurement planes located further downstream, the distinctive regions having large velocity
components are decreased in size and magnitude. At the z/R =0.25 plane, the overall flow structure is observed to
be rotated about 45° in the counter-clockwise direction with a small decay in magnitude, compared with that in the
z/R =0.04 plane. In Fig. 8(c), however, the regions of large radial and tangential velocity components are
decreased considerably in size and no distinguished flow structure exists. The vector field shows a spiral motion
with a vague periodic flow structure at further downstream locations. The radial velocity component is increased
as the distance from the hub increases. From the velocity fields measured in the radial planes, the local maximum
velocity was located around the circumference of a circle with radius 0.7R.

In the vorticity contour plots shown in Fig. 9, the red color represents positive counter-clockwise vortices
and the blue color represents negative clockwise vortices. At the radial plane z /R =0.04, the negative vortices
around the blade tips represent the tip vortex. The elongation along the blade tips is due to the forward-swept
geometry of the fan blade, forming a large roll-up region for the scraping vortices at the blade tips. The positive
trailing vortices are also elongated along the fan blade. These seem to be caused by merging and interaction of the
two boundary layers developed on the upper and lower surfaces of each fan blades. The tip vortex and the trailing
vortex seem to shed alternately. As the flow moves downstream, the angular distance between the trailing vortices
and the tip vortices is changed continuously and the strength of the two vortices is decreased.
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Fig. 9. Contour plots of mean vorticity in the radial planes (units: S-1).

From these contour plots, we can see that the angular convection velocities of the two vortices are different
and that the tip vortex is dissipated faster than the trailing vortex. The tip vortex has a slightly higher initial
vorticity compared with the trailing vortex at the z /R =0.04 plane. In the z /R =0.75 plane, however, it is difficult
to find the tip vortex, and only weak trailing vortices generated from the fan blades are observed. From these
results, we can see that the tip vortex has a higher decay rate compared to the trailing vortex. This may result from
the difference in moving distance of the two vortices; the tip vortex moves a relatively long distance compared
with the trailing vortex located near the hub, in addition, the tip vortex is subject to a larger centrifugal force from
the fan rotation.

4. Conclusions
The flow structure of turbulent wake behind an axial fan has been investigated experimentally using a phase­
averaged 2-frame PTV technique. The axial fan with 5 blades was rotated at 240 rpm and velocity field
measurements were carried out at 4 axial planes and 4 radial planes. For each measurement plane, 500
instantaneous velocity field data were obtained and ensemble averaged to obtain the phase-averaged velocity fields
and vorticity contours. The wake flow behind the axial fan has a periodic flow structure according to the blade
phase, and the flow pattern in each phase is shifted downstream in the next phase. Strong vortices rotating in the
counter-clockwise direction are shed from the trailing edges of the blade and the convection velocity of the vortices
is found to be about 0.557 Utip in the axial direction. The tangential velocity component is accelerated as the flow
goes from the leading edge to the trailing edge of the blade, while the radial velocity component is directed toward
the hub. The tangential velocity component has maximum values in the radial distance of about r=0.7R.
Clockwise tip vortices are shed from the blade tips, while counter-clockwise trailing vortices exist near the hub
region. The tip vortex has a higher decay rate than the trailing vortex.
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